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SHOCK WAVES FAR FROM THEIR SOURCE

L. Landau

ABSTRACT. This study demonstrates that at large distances
from a body moving at a supersonic velocity, there exist
two shock waves which follow each other, rather than one
wave, as has been supposed. The shapes of these waves and
the law of decrease of their intensity are determined. The
propagation of spherical shock waves (explosion waves) at
large distances from the point of explosion also is inves-
tigated.

Shock waves are weak at large distances from their source. Consequently, [286%*
they have the character of sound waves. However, an ordinary linear approxima-
tion is not sufficient for our purposes; it is necessary to examine the proper-
ties of low-amplitude sound waves in the second approximation. Below, we shall
be concerned with cylindrical waves; however, bearing in mind that at large
distances it is possible to comsider a cylindrical or spherical wave in each
small section as a wave, we shall first mention some properties of waves.

As we know, a travelling wave with an arbitrary amplitude is described by
the so-called Riemann solution to the motion equations:
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where f (v) is an arbitrary function of gas velocity v, while ¢ is the local
velocity of sound which is related to v by means of

=

where p is the density and V is the specifié volume of the gas.

These two formulas implicitly determine the velocity v and the remaining
quantities for the wave as a function of x and ¢, 7.e., the wave profile at
each given moment of time. When t = 0, we have z = f (v), 1.e., the inverse
function of f (v) determines the wave profile at the initial moment of time.

The quantity
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is the velocity at which the éoints of the wave profile move. This velocity is
variable for different points of the profile. Consequently, the profile will

*Numbers in the margin indicate pagination in the foreign text.



NASA TT F-11,246

not remain constant, and it will change its shape with time. Let us say that
having expressed u as a function of pressure’p in the wave, for the derivative

we have

Since ’
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The adiabatic derivative is (BZV/BpZ)S, where S is the entropy, which is

positive for all gases, so that du/dp > 0. Thus, the velocity of a given point
of the wave profile increases in proportion to the pressure increase at that
point. Therefore, the points of compression move forward, while the points of
expansion seem to stand still.*

For a low-amplitude wave, the velocity u of the points of the profile in
the first approximation will be obtained if we place the velocity v = 0 in (1),
t.e., u = .. (Letters with the subscript zero will designate equilibrium
values of tRe quantities.) This corresponds to wave profile movement without
a change in shape.

In the next approximation, we have
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where p' is the variable part of the pressure in the wave. For an ideal gas

¢'=!—:—:r-‘— (for air o« = 0.86)

where v = cp/cv is the heat capacity ratio at constant pressure and volume.

*For a more detailed discussion concerning the Riemann solution, see e.g.;,
[1], §77. .
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When the wave profile is deformed to the point that ambiguity appears in
it, we know that a shock wave emerges. Generally speaking, the Riemann solution
beconmes inapplicable after the formation of discontinuities. However, it is
significant that this solution applies for low-amplitude waves in the second
approximation examined. It also applies when discontinuities are present. It
is possible to be certain of this in the following manner. Velocity, compress-
ion and specific volume shocks in a discontinuity are interrelated by the re-
lationship :

Oy vy = V(Pl _Pa) (Vi=V,)

The change of velocity v along a certain length interval of the z axis in
the Riemann solution is equal to the integral -
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A simple computation using series expansion indicates that both of the
written expressions only differ from each other in the terms of the third order
of smallness. (During computation, it is necessary to bear in mind that the
entropy change in the discontinuity is a third-order quantity, while entropy [288
is generally constant in the Riemann solution.)

Hence, it follows that the motion in a traveling wave when a discontinuity
is present can be described with an accuracy up to the terms of the second or-
der on each side of the discontinuity by the Riemann solution. The appropriate
boundary condition will thereby be achieved in the discontinuity itself. 1In
the. following approximations, the quantity related to the appearance of the
waves reflected from the discontinuity surface will not be indicated.

The place of the discontinuity formation in the wave is determined by ‘the
simple geometric condition which can be derived easily using formula (2), and
. the flow continuity condition of matter in the discontinuity (see [1], §78).
The discontinuity is situated in such a way that the area enclosed within the
curve depicting the wave profile remains the same as for the ambiguous curve
which is determined by the Riemann solution.

Let us now examine a body which is moving steadily at a supersonic veloc-
ity U. We shall select the coordinate axis & in the direction of the body's
motion, and shall let r be the distance from that axis. At large distances
from the body, the velocity potentialt? (r,2) of the gas is determined in the
first approximation by the wave equation
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The steady motion condition of the body is



Combining both of these equations, we obtain
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_If in the place of x we introduce the variable

i ‘!.--V——.z..-t:;. i (3)
we obtain the equation
£ ".9*1 [ a( Lol
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" Z.e., the equation of a cylindrical wave, in which 1 is the time.

At sufficiently large distances, it is possible to consider a cylindrical
wave in each small section as being two-dimensional. Then, the velocity of
each point of the wave profile will be determined by formula (2). However, if
we wish to use this formula to trace the point shift of the wave profile over
long intervals, it is necessary to consider that already in the first approx-
‘imation the amplitude of the cylindrical wave decreases with distance as 1//r.

Introducing the designation

’

Peol .

Ponl/r. ’ (4)
and inserting it into formula (2), we obtain /289
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a+t0r=0 (5)

The first term corresponds to wave motion without a change in profile (di-
gressing from the overall amplitude decrease as 1/vr), while the second term
leads to profile distortion. The quantity &ér of this additional displacement

of the profile point at a distance from a certain given large rytor is ob-

tained by multiplying by co-ldr and integrating from r to r_  at constant x. We

0
then obtain

u= r,<1‘+-;7-?';.



If we examine the wave profile as the change of p' with t when r is given,
the profile distortion &r will be
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As we know, a diverging cylindrical wave can be written in linear approx-
imation as

+
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The sign of f is the inverse of the usual one which, correspondingly, is
that in the given case the wave is propagated from the positive values of T to
the negative ones. Here and below, we shall omit the zero subscript to’the
values of the quantities for the equilibrium state for brevity.

In our case, the time T is actually the coordinate . We shall select the
reference origin within the body (at the given moment of time). The regions in
front of the body will thereby correspond to positive values of x. Insofar as
disturbances are not propagated in the space in front of the body during super-
sonic motion, it is possible in any case to confirm that ¢ > 0 when 1 »+ =,
Furthermore, at sufficiently large distances behind the body, where the dis~
turbances caused by it are small (even on the axis itself r = 0) the potential
of the diverging wave, which is determined by formula (7), must remain finite
when r = 0. For convergence of the integral

?(o.=)=°§/(<+-§—)§ |
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it is necessary that f(t) +0 for high negative T at the lower limit (for high
negative 1). ‘Hence, it is easy to conclude that ¢ - 0 also when 1+~ =,
Conversely, the variable part of pressure in the linear approximation is re-

———

lated to ¢ by means of the equality p' = pcza?yar.' Integrating with respect
to 1, we consequently obtain '

*S" prdsm0 . | (8)

This means that if there is bunching in the gas (the region p' > 0), a 1290
rarefaction region must necessarily exist also where p' < 0. In this relation,
a cylindrical wave (the same applies to a spherical wave) differs significantly
from a two-dimensional wave which may consist of only single bunchings or sin-
gle rarefactions.



As we know, a shock wave occurs in a gas when a body moves at supersonic
velocity. The gas is motionless in the space in front of this wave, and there
is a bunching region directly behind the wave. It follows from what has been
stated above that bunching must necessarily be replaced by rarefaction. Con-
sequently, a point must exist at which rarefaction is maximum. Owing to the
effect of gradual profile distortion, this point will lag behind those situated
behind it. Finally, as a result, ambiguity is obtained, and another shock wave
appears. :

Thus, we arrive at this result: at least at sufficiently large distances
from a moving body, there is not one shock wave (as has usually been supposed),
but two shock waves which follow each other. In the first wave, the pressure
experiences an upward shock. Then a region of gradual pressure decrease fol-
lows and bunching is replaced by rarefaction. After this, the pressure again
increases abruptly in the second shock wave.

vy ' : - R Figure 1 schematically illustrates (solld

' 5 line) the resulting picture of pressure p' as a
‘ ) ')b’ function of 1, ¢.2., as a function of coordinate

"”,/’1; - =z, at a given large value of r. The segment ab

J Rl r corresponds to the first shock wave and de cor-

- 7 .
- }P"“]j,/’r a9 . responds to the second. In the latter, the

d . . pressure only increases up to a certain nega-
S tive value, while p' becomes equal to zero
asymptotically when 1 =+ = =,

Figure 1.

Proceeding to a quantitative calculation
of the profile illustrated in Figure 1, let us examine the region between both
shock waves. Let the function t = f(X) determine the profile at a certain dis-
tance Ty

Taking into account the effect of profile distortion, we obtain a profile
at the distance r > ry by adding the displacement 81 to T according to (6).

c-r(x)+—-<1f' -V®) )x \ : )
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At large r values, the quantity X is small; and it is possible to write
the value of the function f(X) in (9) with sufficient accuracy when X = 0. It

is also possible to disregard /;. in comparison with Vr. Thus,

"’?’ '.A ".;:.
X ?fV‘ 33 + thm.

(10)

The value of coordinate x at point ¢ (Figure 1), where X = 0, is designated

0 Certainly, this value depends on r, according to the law Ty = const -r/ec.

Proceeding to the variables p' and x instead of X and T, we have /291
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(11)

Thus, the profile segment bd proves to be rectilinear. The dotted line in
Figure 1 illustrates the profile which is obtained directly by applying the
Riemann solution in the entire integral. Actually, there is a discontinuity at
a certain point a. The position of this point is determined by the geometric
condition explained above regarding the equality of areas a’b'ec and abe. Noting
that x = 0 at points @’ and ¢, we shall find the following by using (9) for .the
area a'b’ec: ,

i.e., the value which does not prove to be depehdent on r. Consequently, the
very same thing must take place for the area abe.

Considering the quantity x as a function of 1(10), we find without dif-
ficulty that the section length Zl from point ¢ (where p' = 0) to the leading

shock wave (p' = pl') is proportional to
I~ rts (12)

Hence, the law of the compression shock pl' in the leading shock wave as a

function of distance will be

,  const (13)

P =7

As for the second discontinuity ed (Figure 1), it is easy to show that the
ratio of the pressure remaining behind the discontinuity (pressure at point e)
to the compression shock pz' in the discontinuity (segment length ed) tends to

unity when ¥ > «, Howéver, this is a relatively slow process. The pressure be-
hind this discontinuity can be considered to be equal to zero only at very large
distances r. The pz’_compression shock is equal to pl' by virtue of (8), the

entire profile area must be equal to zero.

Let us further discuss the spherically symmetrical shock wave propagation
which occurs during an explosion and is viewed far from the explosion. All
reasoning here is exactly the same as the reasoning presented above.

During spherical propagation, wave aﬁplitude drops in the first approxi-



mation as 1/r, whereby r is the distance to the center. Therefore, in place of
(5), we have

8=f:( ;—l-:-z.) (14)

for the velocity % of profile point movement, which, in terms of x, is design-
ated :
. 15
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Correspondingly, for the profile point displacement &§r on a path from a
certain ro to r, we find

»
dr=ay log ;,"0‘

I1f we consider the wave profile as the change of p' with time %, the dis- /292
tortion 8¢ is
3 E i
U= ~7 log 7o (16)

Thus, profile distortion of the spherical wave increases with distance
according to logarithmic law, Z.e¢., it is much slower than the profile distor-
tion increase of two-dimensional or cylindrical waves. (In the latter case,
profile distortion is correspondingly proportional to the first power or root
of the distance). Insofar as usual sound absorption related to viscosity and
heat conductivity always takes place during the propagation of a real wave in
a gas, in view of the slowness of the distortion increase, a spherical sound
wave can be absorbed before profile distortion leads to the formation of dis-
continuities. In particular, if it is a question of the propagation of an ex~
plosion shock wave, the second shock wave which might have followed it (as in
the case of a cylindrical wave) cannot originate.

In the case under investigation, in place of (9) we have the equation

205
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By expanding f(x) in a series with respect to powers of x, limiting our-
selves to terms of the first order, we obtain

tn'-—% X log % + const - a8
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where g is a certain constant. Hence, we again obtain for p' the linear de-
pendence on t as :

e(ty—t) (19)

Pl .
roer log(r/a)

Considering the law of conservation of area, for the spherical case we now
obtain

‘ , g : (20)
lx".' /ln ":"“1 P ~’l/;l—;
a
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